Nonlinear Differential Equations

Math 102 Section 102 Mingfeng Qiu

Nov. 2, 2018

- OSH remarking requests
- Midterm solution

Q1. The amount of ${}^{14}C$ in a sample decreases at a rate proportional to how much ${}^{14}C$ is present. Write down a DE governing the amount of ${}^{14}C$ at time t.

A.
$$C'(t) = kC(t), k > 0$$
 solution grows
B. $C'(t) = -kC(t), k > 0$
C. $C(t) = C_0 e^{kt}$ not a DE
D. $C'(t) = C_0 e^{-kt}$ rate not proportional to amount

Last time: exponential decay

What's the family of general solutions to the following DE?

$$\frac{dx}{dt} = -kx.$$

$$x(t) = Ce^{-kt}$$
, for some C.

Remark:

- ► Any function in the form of x(t) = Ce^{-kt} is a solution to the DE. (we can prove easily)
- Any solution to the DE must be in the form of x(t) = Ce^{-kt}. (temporarily beyond our reach)

- Definitions related to differential equations.
- Initial conditions specify a unique solution.
- Radioactive decay and population growth are described by a simple DE.

- Explain the concepts of linear and nonlinear DEs
- Derive DEs and scale them (moved to next Monday)

Q2. The energy (calories) carried by a hummingbird is F(t). Suppose that the intake takes place at a constant rate a and energy consumption is proportional to the amount of energy being carried with constant b. Which differential equation describes how F(t) changes?

A.
$$\frac{dF}{dt} = a - bt$$

B. $\frac{dF}{dt} = (a - b)t$
C. $\frac{dF}{dt} = (a - b)F$
D. $\frac{dF}{dt} = a - bF$

Rate of change of energy carried = rate of addition - rate of consumption = $a - b \cdot F$.

"Easy" and "hard" differential equations

(Uncontrolled) Population growth

$$\frac{dN}{dt} = kN, \quad k > 0$$

Exponential decay:

$$\frac{dC}{dt} = -kC, \quad k > 0$$

Hummingbird metabolism

$$\frac{dF}{dt} = a - bF$$

Prey population growth under predation

$$\frac{dx}{dt} = rx - \frac{Kx}{a+x}$$
 or $\frac{dx}{dt} = rx - \frac{Kx^2}{a^2 + x^2}$

Linear and nonlinear DEs

Definition (Linear DE)

A differential equation is called a linear (first order) DE if it can be written as

$$\alpha \frac{dy}{dt} + \beta y + \gamma = 0$$

for some constants α,β,γ that do not depend on y or y' but may depend on t.

- ► The key idea is, terms containing the function y or ^{dy}/_{dt} are linear in y and ^{dy}/_{dt}.
- ► Correspondingly, nonlinear (first order) DEs have a nonlinear term in y or ^{dy}/_{dt}. Examples: y^{dy}/_{dt} = −1 or ^{dy}/_{dt} = y²
- First order: only involving the first derivative of the unknown function

- Q3. Which of the following differential equations is nonlinear?
 - A. $\frac{dy}{dt} = t^2$
 - $\mathsf{B.} \ \frac{dy}{dt} = \ell t ky$
 - C. $\frac{dy}{dt} = \sin(t)$
 - D. $\frac{dy}{dt} = \sin(y)$

The equations in A,B, and C, are linear in y and $\frac{dy}{dt}$

Put the following DEs in the chart below:

$$\frac{dy}{dx} = y \quad 2\frac{dy}{dx} = y - \frac{dy}{dx} \quad y\frac{d^2y}{dx^2} = 1 \quad \frac{d^2y}{dx^2} = 2 \quad \frac{dy}{dx} = xy$$

	first order	higher order
linear		
nonlinear		

Put the following DEs in the chart below:

	first order	higher order
linear	$\frac{dy}{dx} = y$ $2\frac{dy}{dx} = y - \frac{dy}{dx}$ $\frac{dy}{dx} = xy$	$\frac{d^2y}{dx^2} = 2$
nonlinear		$y\frac{d^2y}{dx^2} = 1$

Why nonlinear equations?

Because many phenomena are nonlinear!

How can we study them?

- Next week: qualitative methods (geometrical theory)
- The following week: analytical and numerical methods

Answers

B
 D
 D