(Genetic diversity) 1. Entropy and other information theory approaches are used to quantify how genetically diverse a population is. The (Shannon) entropy represents the amount of uncertainty in the information. A given gene can be either on with probability $0 \le x \le 1$, or off with probability $0 \le x \le 1$. The Shannon entropy for the gene is

$$H = -x \log x - y \log y$$

Find x and y so that the genotype is the most unpredictable. (hint: It amounts to finding when the Shannon entropy is the greatest. Make sure you understand why this is the case.)

(Half-life and carbon dating) 2. Researchers at Charlie Lake in BC have found some artifacts. For instance, a butchered bison bone that contains 0.25 mg of ^{14}C isotope. A comparable bone of a bison alive today contains about 1 mg of ^{14}C . We know that the half-life of ^{14}C is 5730 years. How many years ago could human habitation be dated back to in this region?

So	l	utio
1.	(Gen
1	1	

retic diversity)

Notice a gene can only have one of two states: either on or off. So $\lambda + y = 1$ (constraint)

Genotype is the most impredictable = maximal amount of uncertainty in the information = maximize the Shannon entropy.

The question is essentially: log interpreted as ln.

maximize $H = -x \log x - y \log y$ under the constraint x+ y=1

x+ y=1 >> y=1-x. Plug into the objective function

 $H = -x \log x - (1-x) \log (1-x)$ Part 1 Part 2

chain rule: Don't forgot

 $H'(x) = -\log x - x \cdot \frac{1}{x} - (-1) \log (1-x) - (1-x) \cdot \frac{-1}{1-x}$

Part 1 Part 2 product rule product rule + chain rule

= - log x -x + log(1-x) +x

 $=\log\frac{1-\chi}{\chi}$

$$H'(x)=0 \implies \log \frac{1-x}{x}=0 \implies \frac{1-x}{x}=1$$

$$\Rightarrow \chi = \frac{1}{2}$$
 - C.P.

$$H''(x) = -\frac{1}{x} + \frac{-1}{1-x}$$

$$=\frac{-(I-X)-X}{\chi(I-X)}=\frac{-1}{\chi(I-X)}$$

Since $0 \le A \times \le 1$, H''(x) < 0, H(x) is concave down. By SDT, H attains a local max at $x = \frac{1}{2}$. It is the only C.P. in 0 < x < 1. So it's the global max.

Hence, the gene is the most impredictable when there is an equal chance for it to be on or off: $\chi = y = \frac{1}{2}$.

2. (Carpon dating)

Originally, the bison bone contains an amount of "C: Qued = 1 mg.

With every $t_h = 5/30$ years, the amount of 4°C drops by half. Thus $Q_{now} = Q_{old} \cdot \left(\frac{1}{2}\right)^{\frac{1}{t_h}}$

$$\Rightarrow \frac{1}{2} = \frac{1}{4}$$

$$\Rightarrow \frac{t}{t_{2}} = 2$$

So the butchened bone indicates that human activity in this region can be dated back to at least 11460 years ago.

Remark: notice that all the units also work our consistently.