Inverse Functions and Logarithms

Math 102 Section 102 Mingfeng Qiu

Oct. 29, 2018

- Oct 29 (Today): Pre-lecture 9.1
- Oct 31 (Wednesday): Pre-lecture 9.2
- Nov 1 (Thursday): Assignment 8

Assignments due: 9:00 pm

- 1. Explain the definition of an inverse function and $\ln(x)$
- 2. Calculate the derivative of $\ln(x)$ and a^x
- 3. Apply logarithms to solve application problems (moved to Wednesday)

Definition (Inverse function)

Given a function y = f(x), its inverse function, denoted as f^{-1} , satisfies

 $f^{-1}(f(x)) = x.$

Q1.
$$f(f^{-1}(x)) =$$

A. x
B. $-x$
C. $\frac{1}{x}$
D. $-\frac{1}{x}$
E. depends on $f(x)$

Q2. The inverse function of f(x) is the mirror image of the graph of f(x) in the line y = x.

- A. True.
- B. False.
 - Not every function has an inverse function.
 - ► If a function f(x) has an inverse, then for each value y in its range, there is one and only one x such that f(x) = y.
 - Such a function is called a one-to-one (or 1-1 or bijective) function.

- ► The graphs of inverse functions are symmetric about the line y = x.
- ∀(x, y) on the graph of f(x), (y, x) is on the graph of f⁻¹(x). Same vice versa.

https://www.desmos.com/calculator/gweahslmzx

Definition (Logrithm)

 $y = \log_a x$ is the inverse function of the exponential function $y = a^x$ (a > 0). In particular, denote $\log_e x$ as $\ln x$ (sometimes also written as $\log x$).

Q3. Starting from a single cell, how long will it take for an *E. coli*. colony to reach size of $6 \cdot 10^8$ cells by doubling every 20 minutes?

Note that the if time is measured in minutes, the number of bacteria at time t is

$$B(t) = 2^{\frac{t}{20}}.$$

$$\begin{array}{ll} \mathsf{A.} & t = 2 \frac{\ln(8) + 6 \ln(10)}{\ln(20)} \\ \mathsf{B.} & t = 20 \frac{\ln(8) + 6 \ln(10)}{\ln(2)} \\ \mathsf{C.} & t = 2 \frac{\ln(6) + 8 \ln(10)}{\ln(20)} \\ \mathsf{D.} & t = 20 \frac{\ln(6) + 8 \ln(10)}{\ln(2)} \end{array}$$

Document camera

- Derivative of a^x revisited
- Derivative of $\log_a x$

Answers

1. A 2. B

3. D

1. Consider the function $f(x) = \log_2(x)$. Find the slope of this function at the point x = 1.

2. If
$$f(x) = x^x$$
, find $f'(x)$.

- 3. Let f^{-1} be the inverse function of f(x). Assume f(0) = 1 and f'(0) = 2. Find the tangent line y = mx + b to $f^{-1}(x)$ at 1.
- 4. If $f(x) = x^{x^x}$, find f'(x) (not really an exam problem, but interesting)