Related Rates

Math 102 Section 102 Mingfeng Qiu

Oct. 22, 2018

Due due due due due...

- Oct 22 (Today): Pre-lecture 8.1
- Oct 24 (Wednesday): Pre-lecture 8.2
- Oct 26 (Friday): Assignment 7

Assignments due: 9:00 pm

Related rates

- When two quantities, Q₁ and Q₂, are related to each other, if one changes in time so will the other.
- ► The relationship between Q₁ and Q₂ will give you the relationship between dQ₁/dt and dQ₂/dt:

If
$$Q_2 = f(Q_1)$$
, then $\frac{dQ_2}{dt} = \frac{df}{dQ_1} \frac{dQ_1}{dt}$.

Example

If
$$z^2 = x^2 + y^2$$
, $z > 0$, $\frac{dx}{dt} = 4$, $\frac{dy}{dt} = 5$, find $\frac{dz}{dt}$ when $x = 5$ and $y = 12$.

Q1. True or false?

$$\frac{dz}{dt} = \frac{x\frac{dx}{dt} + y\frac{dy}{dt}}{z}$$

A. True

B. False

Example

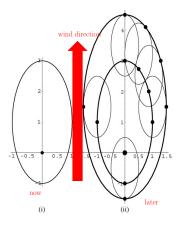
If
$$z^2 = x^2 + y^2$$
, $z > 0$, $\frac{dx}{dt} = 4$, $\frac{dy}{dt} = 5$, find $\frac{dz}{dt}$ when $x = 5$ and $y = 12$.

$$\frac{dz}{dt} = \frac{x\frac{dx}{dt} + y\frac{dy}{dt}}{z}$$
Q2. What is z when $x = 5$ and $y = 12$?
A. 0
B. 13
C. 17
D. 169
 $z^2 = 5^2 + 12^2 = 25 + 144 = 169$

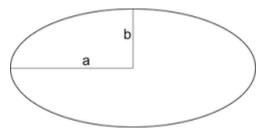
Example

If
$$z^2 = x^2 + y^2$$
, $z > 0$, $\frac{dx}{dt} = 4$, $\frac{dy}{dt} = 5$, find $\frac{dz}{dt}$ when $x = 5$ and $y = 12$.
$$\frac{dz}{dt} = \frac{x\frac{dx}{dt} + y\frac{dy}{dt}}{z}$$

z = 13 when x = 5 and y = 12.


Q3. What is
$$\frac{dz}{dt}$$
, when $x = 5$ and $y = 12$?
A. 13/80
B. 80
C. 80/13
D. 13

$$\frac{dz}{dt} = \frac{5 \cdot 4 + 12 \cdot 5}{13} = \frac{80}{13}$$


Document Camera Examples

- 1. The radius of a spherical tumour grows at a constant rate k. Determine the rate of growth of the volume of the tumour when the radius is 1 cm.
- 2. Water is leaking out of a conical cup of height H and radius R. Find the rate of change of the height of water in the cup when the cup is full, if the volume of water is decreasing at a constant rate k.

Related rates: forest fire

Jan Glasa, Ladislav Halada, On elliptical model for forest fire spread modeling and simulation, Mathematics and Computers in Simulation, Volume 78, Issue 1, June 2008, Pages 76-88 A forest fire is the shape of an ellipse with semi-major axis a and semi-minor axis b:

The area of this fire is $A = \pi ab$.

Related Rates: forest fire

 $A = \pi a b.$

Due to wind, $\frac{da}{dt} = 1$ m/min, and $\frac{db}{dt} = \frac{1}{4}$ m/min. The rate of change of the area of the fire when a = 100 m and b = 80 m is

Q4.

- A. $\pi \text{ m}^2/\text{min}$ B. $100\pi \text{ m}^2/\text{min}$
 - C. $105\pi \text{ m}^2/\text{min}$
 - D. $120\pi \text{ m}^2/\text{min}$

$$\frac{dA}{dt} = \pi \left(b\frac{da}{dt} + a\frac{db}{dt} \right) \Rightarrow \left. \frac{dA}{dt} \right|_{(100,80)} = \pi (80 \cdot 1 + \frac{100}{4})$$

- ▶ Related Rates: The relationship between Q₁ and Q₂ also gives the relationship between Q'₁ and Q'₂.
- To solve a Related Rates problem:
 - 1. Sketch & formulate an idea
 - 2. Find an appropriate equation describing the relations between quantities
 - 3. Relate the rates (differentiate...)
 - 4. Substitute appropriate values
 - 5. Reality check

Answers

A
 B
 C
 C

1. Oil is leaking out of a cargo ship at a rate of $1 \text{ m}^3/\text{hr}$, forming a circular patch on the surface of the water. The radius r(t) of the oil slick increases while its thickness, $\tau = 0.01$ m, remains constant. Find the rate of change of the radius at the moment when r = 10 m.