Antiderivative sketching, tangent lines and linear approximation

Math 102 Section 102 Mingfeng Qiu

Sep. 26, 2018

- Midterm practice problems
- Midterm Q&A sessions
- Take your own responsbility!

- Cats (anti-derivatives)
- Sea otters and others (compound function)
- Chain rule

Today

- Sketching anti-derivatives
- Tangent lines
- Linear approximation

Q1. If
$$f'(x) = 6x^2 + 4x - 1$$
, what is a possible $f(x)$?
A. $f(x) = 12x + 4$
B. $f(x) = 2x^3 + 2x^2 - x$
C. $f(x) = 2x^3 + 2x^2 - x + 2$
D. $f(x) = 2x^3 + 2x^2 - x + C$

Slopes at each x don't change with a vertical shift!

This is f'(x). Draw f(x).

This is f'(x). Draw f(x).

This is f'(x). Draw f(x).

Only determined up to a vertical shift.

- Our discussion of antiderivatives was a gentle introduction to a later topic (differential equations).
- What else can we do with tangent lines?
 - Approximate a smooth function using a straight line (today)
 - Approximate the zeros of a smooth function Newton's method (Friday)

- The tangent line at a point is the unique line that looks like the function when you zoom in on that point.
- Slope of tangent line = f'(a) at point x = a
- Equation of tangent line at (a, f(a)):

$$y - f(a) = f'(a)(x - a).$$

Example

Find a tangent line to the function $f(x) = x^3 + 2x^2 - x + 2$ that is parallel to the line y = -x + 3.

- We need to find a such that f'(a) = -1.
- $f'(a) = 3a^2 + 4a 1 = -1$
- ► $3a^2 + 4a = 0$
- $\blacktriangleright \ a = 0, \frac{-4}{3}$
- Tangent line 1: y = -x + 2
- Tangent line 2: ?

Find equations of all tangent lines to $f(x) = x^2$ that go through the point (-1, -1).

Solution to exercise Derivative:

$$f'(x) = 2x.$$

Let (a, a^2) be a point on the graph of the function. The equation for the tangent line (point-slope form) is:

$$y - a^2 = 2a(x - a).$$

We know that the line goes through (-1, -1). Plug the point in to figure out a:

$$-1 - a^2 = 2a(-1 - a).$$

After some manipulation:

$$a^2 + 2a - 1 = 0.$$

Recall the formula to solve a quadratic equation. We get

$$a = -1 \pm \sqrt{2}.$$

So there are two tangent lines of the original function passing through the point (-1, -1). Now complete the equations of them...

Linear approximation

Example (PL 4.2)

Find an approximation for f(1.5) Q2. What is the point of tangency?

Linear approximation (local approximation using tangent line)

Q3. What is the slope of the tangent line?

A. 2

B. 3

C. 3/2

D. -3

Q4. What is the equation of the tangent line?

A.
$$y = 2x - 1$$

B. $y = 2x + 1$
C. $y = 2x - 0.5$
D. $y = x - 1$

Linear approximation

- Q5. The linear approximation to $f(1.5) \ {\rm is}$
 - A. $f(1.5) \approx 1$
 - B. $f(1.5) \approx 1.5$

C.
$$f(1.5) \approx 2$$

D. $f(1.5) \approx 2.5$

Linear approximation

- Q6. The linear approximation to $f(1.5) \ {\rm is}$
 - A. an overestimate
 - B. an underestimate

Note: this would be more clear later in the term, when we talk about concavity of functions.

Linear approximation (general)

- Want f(b), but it's too hard to calculate
- Know f(a) and f'(a), and these are easy to calculate
- Use the tangent line (linear approximation) to approximate f(b)

Fact (Local approximation using the tangent line)

Given a smooth function f(x) and a point (a, f(a)) on its graph, one can approximate the value of the function close to the point x = a using its tangent line at x = a:

$$L(x) = f(a) + f'(a)(x - a).$$

Note: this is also the important foundation in our next lecture for Newton's method of finding zeros of a function.

Q7. Find the tangent line to $f(x) = \sqrt{x}$ at A. x = 1B. x = 10C. x = 99D. x = 100

Q8. Plug ? into the linear approximation

$$L(x) = f'(a)(x-a) + f(a)$$

- A. x = 1
- B. x = 10
- **C**. x = 99
- **D**. x = 100

- Q9. The estimate will be an
 - A. overestimate
 - B. underestimate

Q10. No calculators allowed. $\sqrt{99}\approx$

- A. 9.94
- **B**. 9.95
- C. 9.96
- D. 9.97
- E. Help!

Estimate $\sqrt{99}$

$$L(x) = f(a) + f'(a)(x - a)$$

$$L(99) = f(100) + f'(100)(99 - 100)$$

$$= 10 + \frac{1}{20}(-1)$$

$$= 9.95$$

- Sketching anti-derivatives (only determined up to a vertical shift).
- Tangent line equations. Two key things:
 - Which point?
 - What slope? (derivative)
- Linear approximation using a tangent line.
 - Which is the "anchoring" point? Which is the point you want to approximate?

Answers

- $1. \ \ B,\ C,\ or\ D$
- 2. C
- 3. A
- **4**. A
- 5. C
- 6. B
- 7. D
- 8. C
- 9. A
- 10. B

- 1. Consider the function $f(x) = \frac{3}{x-2}$. At which points (a, f(a)) does the graph of this function have tangent lines parallel to the line y = -x. What is the equation of the tangent lines at each of these points?
- 2. Find the point or points on the graph of f whose tangent line to f goes through the point (0, 1/2) where $f(x) = \frac{1}{1+x^2}$.

3. Find a linear approximation that for $(1.1)^8$. Explain why the approximation is an over or under estimate.