Anti-derivatives and chain rule

Math 102 Section 102 Mingfeng Qiu

Sep. 24, 2018

Due due due due due...

- Sep 24 (Today): WeBWork Pre-lecture 4.1
- Sep 26 (Wed): WeBWork Pre-lecture 4.2
- Sep 27 (Thu): WeBWork Assignment 3
- Sep 28 (Fri): OSH 2 (start early!)

Power rule, product rule, quotient rule

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$(f(x))' = f'(x)g(x) - g'(x)f(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - g'(x)f(x)}{\left(g(x)\right)^2}$$

- Linear operators
- Anti-derivatives

Today

- Anti-derivative and cats
- Compound functions
 - Sea otters, sea urchins, kelp forests
- Chain rule
- Practice

Antiderivatives & cats

Annals of Improbable Research Diamond, J. (1988) *Why cats have nine lives*, Nature 332. Thanks to Joseph M. Mahaffy for the falling cat idea.

Cats tend to land on their feet when falling (0.3 seconds to flip over).

Question

What is the minimum height from which a cat can fall to ensure it lands on its feet?

Antiderivatives & cats

Idea: let h(t) be the height of the cat above ground at time t, and suppose $h(0) = h_0$ (pronounced as "h-naught"). If $h(0.3) \ge 0$, then the cat is safe.

Newton's second law of motion provides:

$$ma = -mg$$

- m is the mass of the cat
- a is the acceleration of cat

•
$$-mg$$
 is the force of gravity ($g = 9.81 \text{ m/s}^2$)

Hence our model

$$h''(t) = a(t) = -g.$$

Initially

Antiderivatives & cats

Use antiderivatives:

- Acceleration: h''(t) = -g
- Velocity: h'(t) = -gt + B
- Height: $h(t) = -g\left(\frac{t^2}{2}\right) + Bt + A$
- Initial height: $h(0) = h_0 \Rightarrow A = h_0$
- ▶ Initial velocity: $h'(0) = v_0 \Rightarrow B = v_0 = 0$

Height of cat above ground:

$$h(t) = -g\left(\frac{t^2}{2}\right) + h_0$$

The height of the cat at time 0.3 seconds is h(0.3):

$$h(0.3) = \frac{-g(0.3)^2}{2} + h_0 = -0.441 + h_0,$$

so the cat must fall from a height of at least 44.1 cm to have sufficient time to flip over before hitting the ground. Note: This is consistent with the Annals of Improbable Research data, which suggests that a cat dropped upside down from a height of 2 to 6 feet (\approx 60 cm to \approx 180 cm) will always land on its feet.

Sea otters, urchins, and kelp

Sea otter is a so-called "keystone species" whose population significantly affects a lot of others. Watch the video clip and note the relationship between sea otters and two other species. Video: 2:27-3:50

If you have not seen sea otters, go to Vancouver Aquarium! You don't get to see them everywhere!

Composition of functions

- t: time
- ► *o*: otter population
- ▶ *u*: urchin population
- ► k: kelp population

$$k = k(u) = k(u(o)) = k(u(o(t))).$$

Q1. k'(u) is

- A. positive
- B. negative
- C. not sure

- Q2. k'(o) is
- A. positive
- B. negative
- C. not sure

Composition of funcitons

Q3. If
$$f(x) = 2x + 3$$
 and $g(x) = -4x + 2$,
A. $h(x) = f(g(x)) = -8x + 7$
B. $h(x) = f(g(x)) = -8x - 10$
C. $h(x) = f(g(x)) = -2x^2 - 8x + 6$
D. $h(x) = f(g(x)) = -8x + 5$
Solution:

$$h(x) = f(g(x)) = 2(-4x + 2) + 3 = -8x + 7$$

Composition of functions:

$$f \circ g(x) = f(g(x))$$

Fact (Chain rule)

Suppose f and g are differentiable functions, then

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x) = \frac{df}{dg}\frac{dg}{dx}$$

Example Differentiate $h(x) = (x^2 + x^3)^4$ Let $f(x) = x^4$ and $g(x) = x^2 + x^3$ h'(x) = f'(g(x))g'(x) $= 4(x^2 + x^3)^3 \cdot (2x + 3x^2)$ $= 4(2x + 3x^2)(x^2 + x^3)^3$

Today

- Anti-derivative and cats
- Compound functions
 - Sea otters, sea urchins, kelp forests
- Chain rule
- Practice

Answers

1. B

2. A

3. A

- 1. Suppose that $f(x) = (3 + x^2)g(x)$ and that g(2) = 2, g'(2) = -1. Compute f'(2).
- 2. Find the equation of the tangent line to the graph of $f(x) = x^3 3x + 1$ at x = 0. Where does the tangent line intersect the *x*-axis?