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Due this week

I Today: WW logstics (anyone not knowing how to log in?)

I Tue: WW pre-lecture 2.1

I Wed: OSH 0

I Thu: WW pre-lecture 2.2

I Fri: OSH 1 (start early)

I Sun: WW diagnostic (1 hour, without resources)



Last time: power functions

I Small powers dominate close to x = 0; large powers
dominate for large x.

2 Chapter 1. Power functions as building blocks

Let us consider the power functions, that is functions of the form

y = f(x) = xn,

where n is a positive integer. Power functions are among the most elementary and “elegant”
functions 1. They are easy to calculate, very predictable and smooth, and, from the point of
view of calculus, very easy to handle.

From Figure 1.1a, we see that the power functions (y = xn for powers n = 2, . . . 5)
intersect at x = 0 and x = 1. This is true for all integer powers. The same figure also
demonstrates another extremely important fact: the greater the power n, the flatter the
graph near the origin and the steeper the graph beyond x > 1. This can be restated in terms
of the relative size of the power functions. We say that close to the origin, the functions
with lower powers dominate, while far from the origin, the higher powers dominate.
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Figure 1.1. (a) Graphs of a few power functions y = xn. All intersect at x = 0, 1.
As the power n increases, the graphs become flatter close to the origin and steeper at large
x values (LG 1). Near the origin, power functions with lower powers dominate over (have a
larger value compared to) power functions with higher powers. Far from the origin, power
functions with higher powers dominate (LG 2). (b) Graphs of the two power functions
(y = 5x2, y = 2x3). Close to the origin, the quadratic power function has a larger value,
whereas for large x, the cubic function has larger values. The functions intersect when
5x2 = 2x3, which holds for either x = 0 or x = 5/2 = 2.5 (LG 3).

More generally, a power function has the form

y = f(x) = K · xn

1We only need to use multiplication to compute the value of these functions at any point.



Last time: sketching simple polynomials

Example (Sketch y = x5 + ax3.)
a < 0: a = 0: a > 0:

Correction: number of zeros



Today

I Rational functions and Hill functions

I Sketch a Hill function

I Michaelis-Menten model in biochemistry



Rational functions

I A rational function is a function that can be written as

y =
p1(x)

p2(x)
,

where p1(x) and p2(x) are polynomials.

Example (Hill function)
Draw a sketch of

y =
Axn

an + xn

for x ≥ 0. (A, a > 0, n ≥ 1)



Rational functions

y =
Axn

an + xn
, x ≥ 0.

I x� a (much smaller than a):

an + xn ≈ an ⇒ y ≈ Axn

an
=

A

an
xn.

1.5. Rate of an enzyme-catalyzed reaction 13
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Figure 1.5. The rational functions (1.7) with n = 1, 2, 3 are compared on this
graph. Close to the origin, the function behaves like a power function, whereas for large x
there is a horizontal asymptote at y = A. As n increases, the graph becomes flatter close
to the origin, and steeper in its rise to the asymptote.

1.5.1 Saturation and Michaelis-Menten kinetics
Biochemical reactions are often based on the action of proteins known as enzymes that
catalyze many reactions in living cells. Shown in Fig. 1.6 is a typical scheme. The enzyme
E binds to its substrate S to form a complex C. The complex then breaks apart into a prod-
uct, P, and an enzyme molecule that can repeat its action again. Generally, the substrate is
much more plentiful than the enzyme.
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Figure 1.6. An enzyme (catalytic protein) is shown binding to a substrate molecule
(circular dot) and then processing it into a product (star shaped molecule).

In the context of this example, x represents the concentration of substrate in the
reaction mixture. The speed of the reaction, v, (namely the rate at which product is formed)
depends on x. But the relationship is not linear, as shown in Fig. 1.7(a). In fact, this
relationships, known asMichaelis Menten kinetics, has the form

speed of reaction = v =
Kx

kn + x
, (1.8)

whereK, kn > 0 are positive constants that are specific to the enzyme and the experimental
conditions.

Equation (1.8) is a rational function. Since x is a concentration, it must be a positive
quantity, so we restrict attention to x ≥ 0. The expression in (1.8) is a special case of
the rational functions explored in Example 1.11, where n = 1, A = K, a = kn. In the



Rational functions
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Hill function: y = Axn

an+xn , x ≥ 0
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Hill function: y = Axn

an+xn , x ≥ 0

Q1. The asymptote for
the Hill function is

A. A

B. A/2

C. a

D. a/2

E. an
x

y
I y = A is the maximal response

I We also say

lim
x→∞

Axn

an + xn
= A.



Hill function: y = Axn

an+xn , x ≥ 0

Q2. The value of x for
half-maximal response is

A. A

B. A/2

C. a

D. a/2

E. an
x

y

I x = a is the half-max



Hill function: y = Axn

an+xn , x ≥ 0

Definition (Hill function)

A rational function which has the form of

y =
Axn

an + xn
, x ≥ 0,

where A, a > 0 and n is a non-negative integer, is called a Hill
function. A is the horizontal aymptote, n the coefficient, and
a the half-max.



Hill function: y = Axn

an+xn , x ≥ 0

Q3. Why is it called a Hill function?

A. Because it looks like a hill

B. Because it describes an increasing function

C. Because it was named after A.V. Hill

D. Because in biology it describes a Hill process



Why is it called a Hill function?

Hill functions are named after, Archibald
Hill, a Nobel Prize winning muscle
physiologist.

The Combinations of Haemoglobin with
Oxygen and with Carbon Monoxide. I

Biochem. J 1913 Oct; 7(5): 471-480.

https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC1550542/

https:

//en.wikipedia.

org/wiki/

Archibald_Hill

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550542/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550542/
https://en.wikipedia.org/wiki/Archibald_Hill
https://en.wikipedia.org/wiki/Archibald_Hill
https://en.wikipedia.org/wiki/Archibald_Hill
https://en.wikipedia.org/wiki/Archibald_Hill


Speed of an enzyme reaction

Michaelis-Menten kinetics:

E + S 
 C → E + P

https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics


Speed of an enzyme reaction

Speed of reaction

v =
Kx

kn + x



Today

I Rational functions

I Hill functions (horizontal asymptote, half-max,
coefficient)

I Sketch a Hill function

I Enzyme reaction speed can be modelled using Hill
functions



Answers

1. A

2. C

3. C


