Trig Functions, Their Inverses and Derivatives

Math 102 Section 102 Mingfeng Qiu

Nov. 26, 2018

- Nov 26 (Today): Pre-lecture 13.1
- ▶ Nov 28 (Wednesday): Pre-lecture 13.2
- Nov 29 (Thursday): Assignment 12

Assignments due: 9:00 pm

Dec 4 (Exam day), 3:30 pm: Assignment 13

Final exam question sessions

- Nov 29 (Thu), 4-7 pm
- Nov 30 (Fri), 4-7 pm
- Location: SWNG 122

- Fit trig functions to describe rhythmic processes
- Define and apply inverse trig functions
- Derivatives of trig functions (moved to Wednesday)

OSH 6 - Q3

3. I Am My Own Grandpa

where by "grandpa" we mean "derivative"

3a. True or false: the function $y = e^x$ satisfies the differential equation $\frac{dy}{dx} = y$.

3b. Find a constant function y = c that also satisfies the differential equation $\frac{dy}{dx} = y$.

3c. We define a function y(x) as the (infinite) sum below:

$$y(x) = 1 + rac{x}{1} + rac{x^2}{2 \cdot 1} + rac{x^3}{3 \cdot 2 \cdot 1} + rac{x^4}{4 \cdot 3 \cdot 2 \cdot 1} + rac{x^5}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} + \cdots$$

What is y(0)?

3d. Does y(x) (the function defined above) satisfy the differential equation $\frac{dy}{dx} = y$? Explain your reasoning.

3e. We want to generate approximate values of y(x) on the interval [-2,2]. Since we can't add up infinitely many numbers, we'll use the function \tilde{y} instead of y, where \tilde{y} is only the sum of the first eleven terms:

$$ilde{y} = 1 + rac{x}{1} + rac{x^2}{2 \cdot 1} + rac{x^3}{3 \cdot 2 \cdot 1} + \dots + rac{x^{10}}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

Use a spreadsheet to generate the values $\tilde{y}(x)$ for x in the interval [-2,2], with x-increments of 0.1. That is: find $\tilde{y}(-2), \tilde{y}(-1.9), \tilde{y}(-1.8)$, etc. Give a screenshot of your work.

Hint: the denominators are factorials, usually computed in spreadsheets as =FACT(n). So, for example, =FACT(3) will give you 6, because 3*2*1 is 6.

3f. Use your spreadsheet to generate values of e^x for the same x-values you used above. Screenshot the values. What does this suggest about the function v(x)? Trig functions can be used to descibe some rhythmic/periodic/oscillatory processes.

Example (Fitting a trig function to a rhythmic process)

The level of a certain hormone in the bloodstream fluctuates between undetectable concentration at t = 7:00 and 100 ng/ml (nanograms per millilitre) at t = 19:00 hours. Approximate the cyclic variations in this hormone level with an appropriate periodic trigonometric function. Let t represent time in hours from 0:00 hrs through the day.

(Document camera)

Inverse trig functions

Definition (Inverse function)

Given a function y = f(x), its inverse function, denoted as f^{-1} , satisfies

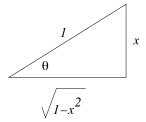
$$f^{-1}(f(x)) = x.$$

Q1. The inverse function of f(x) is the mirror image of the graph of f(x) to the line y = x.

- A. True.
- B. False.

• Only one-to-one (or 1-1 or bijective) functions are invertible.

Inverse trig functions



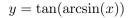
- Because sin x is periodic, we need to restrict the domain to define an inverse function.
- https://www.desmos.com/calculator/zx6c0htith
- Inverse trig functions are only inverses of the trig functions on their restricted domains!

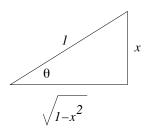
Inverse trig functions

(Document camera)

Q2. Simplify the expression $y = \tan(\arcsin(x))$ A. $\sqrt{1-x^2}$ B. $\frac{x}{\sqrt{1-x^2}}$ C. $\frac{1}{x}$ D. xE. $\frac{\sqrt{1-x^2}}{x}$

Inverse trig Functions

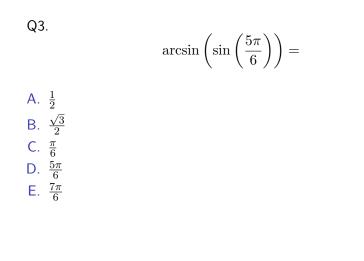


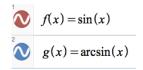


•
$$\theta = \arcsin(x)$$

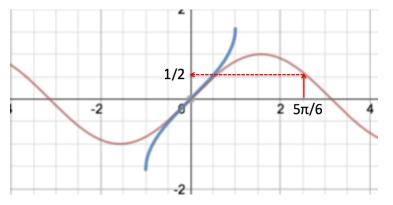
• $y = \tan \theta = \frac{x}{\sqrt{1-x^2}}$

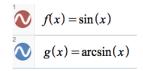
Inverse trig Functions



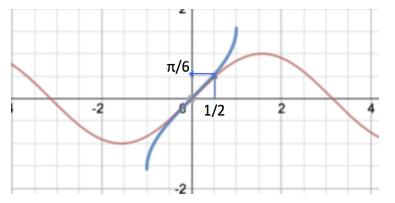


$Sin(5\pi/6)=1/2$

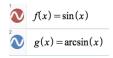




$Arcsin(1/2)=\pi/6$



arcsin(sin(x))≠x



In this example, we found that:

 $\arcsin(\sin(5\pi/6)) = \pi/6 \neq 5\pi/6$

However, on the restricted domains, $-\pi/2 \le x \le \pi/2$ and $-1 \le x \le 1$ $\arcsin(\sin(x))=x$ and $\sin(\arcsin(x))=x$.

Inverse trig functions are only inverses of the trig functions on their restricted domains!

- Trigonometric functions can be used to describe rhythmic processes. To do that, one just needs to figure out the amplitude, frequency and phase shift.
- To be invertible, trig functions have to be restricted to certain domains.
- Triangles and identities are useful when simplifying inverse trigonometric relationships and calculating derivatives.

Answers

B
B
C