Trigonometric Functions and Their Inverses

Math 102 Section 102 Mingfeng Qiu

Nov. 23, 2018

- Course evaluations
- Study for final
- Three illusions
 - "No way! That person who fails the exam cannot be me."
 - "I only need to study on the day before the exam."
 - "With the book/solutions at hand, the knowledge jumps into my head."

- Trig functions and motion around a circle
- Period, frequency
- Trig identities

- Explain amplitude, frequency, phase angle and phase shift
- Fit trig functions to describe rhythmic processes
- Define and apply inverse trig functions

Parameters of a trig function

Consider the trig function $y(t) = A\sin(\omega t + \phi)$.

- A is the amplitude, which controls the magnitude of oscillations. (volumn)
- ω is the frequency, which controls how fast the oscillations are. (pitch)
- $\omega t + \phi$ is the phase, where ϕ is the phase shift. (a shift of the graph along the *x*-axis)

Q1. sin(x) and cos(x) are essentially the same function, because $\sin(x) =$ A. $\cos(x)$ **B**. $\cos(x + \pi/2)$ C. $\cos(x - \pi/2)$ D. $\cos(x+\pi)$ E. $\cos(x - \pi)$ $\sin(x) = \cos(\pi/2 - x) = \cos(x - \pi/2)$ since \cos is an even function. Therefore, sin is \cos offset by $\pi/2$ along the x-axis.

The shape of of sine functions

Example (Transform of sine functions) Write each of the following functions in the form $y(t) = A\sin(\omega t + \phi)$. (Document camera)

Example (Transform of sine functions) Sketch the function $y = 1 + 2\sin(2\pi x + 0.8\pi)$. (Document camera)

 Trig functions can be used to descibe some rhythmic/periodic/oscillatory processes.

Example (Fitting a trig function to a rhythmic process) The level of a certain hormone in the bloodstream fluctuates between undetectable concentration at t = 7:00 and 100 ng/ml (nanograms per millilitre) at t = 19:00 hours. Approximate the cyclic variations in this hormone level with an appropriate periodic trigonometric function. Let t represent time in hours from 0:00 hrs through the day. Amplitude, frequency, and phase shift completely describe the shape of a sine function.

Answers

1. C