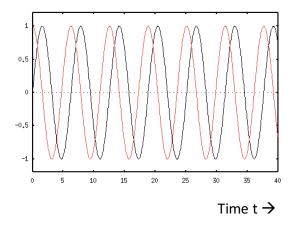
Trigonometric functions

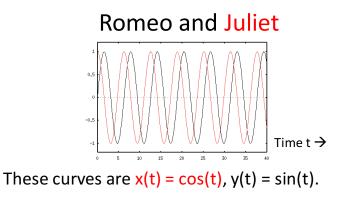
Math 102 Section 102 Mingfeng Qiu


Nov. 21, 2018

Teaching evaluations

- ▶ Before Dec. 3
- I won't see it until your grades are finalized
- Our Department chair, Dean of Faculty of Science will read them
- Of course, I will read them

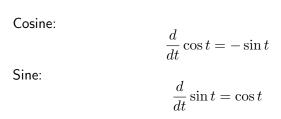
Definition and properties of trigonometric functions


Romeo and Juliet

Mathematics can be used to study social relationships, including love! If you are curious, check out this book: Strogatz, S. H. (2014). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview press.

Q1. Do you recognize these functions?

- Yes! These are
 - A. Polynomials
 - B. Exponentials
 - C. Power functions
 - D. Sine and cosine
 - E. Not sure


Introducing the trigonometric functions

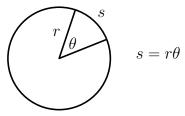
- $\triangleright \cos t$
- $\blacktriangleright \sin t$

What is special about these functions?

- They are periodic
- They describe oscillating systems
- They have "nice" derivatives

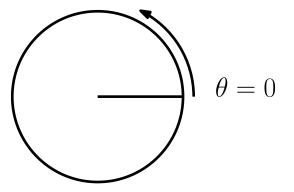
Derivative of cosine and sine

More to come later


- I thought trig functions had to do with angles and triangles.
- They do!

Angles in radians

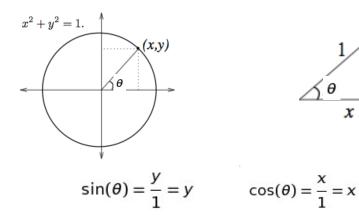
Define a new measure for angles:


 $1~{\rm revolution}$ around a cirle $=2\pi~{\rm radians}$

Angles are associated with the length of an arc subtended by that angle:

Convention

Angles increase counterclockwise



Q2. In terms of radians, the angles 30, 45, 60, and 90° are A. $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$ B. $\pi/3$, $\pi/2$, $\pi/6$, π C. $\pi/30$, $\pi/45$, $\pi/60$, $\pi/90$

degrees	radians	$\sin(t)$	$\cos(t)$	$\tan(t)$
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{3}{\frac{\pi}{2}}$	ī	Ō	∞

Connection with angle (θ)

y

- Q3. Are sin(t), cos(t) even or odd?
- A. even, even
- B. even, odd
- C. odd, even
- D. odd, odd
- E. Send help!

 $\sin(-t) = -\sin(t), \ \cos(-t) = \cos(t)$

Trig identity

• Equation of circle of radius 1:

$$x^2 + y^2 = 1$$

Point on that circle

 $(\cos(t),\sin(t))$

Thus,

$$\sin^2(t) + \cos^2(t) = 1$$

Two important limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Motion around a circle

Angle increases

$$\frac{d\theta}{dt} = \omega$$

Motion can be described by either

1. Polar coordinates:

$$r = 1, \quad \theta(t) = \omega t$$

2. Cartesian coordindates:

$$(x(t), y(t)) = (\cos(\omega t), \sin(\omega t))$$

Desmos demo

Definition (Periodic functions)

A function is periodic with period T if for any value of t

$$f(t) = f(t+T)$$

• $\sin t$ is 2π -periodic since for any value of t

$$\sin(t+2\pi) = \sin t$$

• same for $\cos(t)$

Frequency and period

Q4. What's the period of $\sin(\omega t)$, where $\omega \neq 0$? A. π

- B. 2π
- C. $2\pi\omega$
- D. $\frac{2\pi}{\omega}$

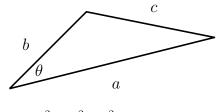
$$\sin\left(\omega(t+\frac{2\pi}{\omega})\right) = \sin(\omega t + 2\pi) = \sin(\omega t)$$

- ω is called the frequency.
- Frequency:

https://www.desmos.com/calculator/n8irldojfy

Other trig functions

$$\tan t = \frac{\sin t}{\cos t}, \quad \cot t = \frac{1}{\tan t}$$
$$\sec t = \frac{1}{\cos t}, \quad \csc t = \frac{1}{\sin t}$$


Sum of two angles

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

Pythagorean identity

$$\sin^2(t) + \cos^2(t) = 1$$

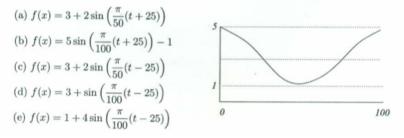
 $\tan^2(t) + 1 = \sec^2(t)$

Law of cosines

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Q5. In the special case, $\theta = \frac{\pi}{2}$, the law of cosines reduces to which of these?


A. $c^2 = a^2 + b^2 - 2ab$ B. $c^2 = (a - b)^2$ C. $c^2 = a^2 + b^2$ D. $\sin^2(t) + \cos^2(t) = 1$

- Trigonometric functions are related to motion around a circle
- Frequency, period, identities.

Answers

D
A
C
D
C

1.8: Which of the following functions corresponds to the one plotted to the right?

