Qualitative Analysis of differential equations II State-Space Diagrams

Math 102 Section 102 Mingfeng Qiu

Nov. 7, 2018

Due due due due due...

- Nov 7 (Today): Pre-lecture 10.2
- Nov 8 (Thursday): Assignment 9
- Nov 9 (Friday): OSH 5

Assignments due: 9:00 pm

- Guest lecturer on Friday (Daniel Di Benedetto)
- ▶ How to interpret your midterm score (Link) (Sections 1-2)
- Advice: read your textbook, and do practice exercises

- A slope field is a geometrical representation of slopes of tangent lines to solution curves of a DE
- One can qualitatively sketch how the solution curves behave with the help of the slope field.

- Explain the concenpt of steady states and their stability.
- Use the slope field to identify steady states and their stability.
- Sketch the state-space diagram of a DE.
- Describe qualitative behavior of the solutions of a DE using the state-space diagram.
 - A state-space diagram is basically the same thing as a slope field, just a biiiiiit more abstract.

A DE ^{dy}/_{dt} = f(y) describes a system. The dependent variable y describes the state of the system.

Definition (Steady state)

A steady state is a state in which a system is not changing.

Example

What is the steady state(s) of the logistic equation?

$$\frac{dy}{d\tau} = y(1-y)$$

Set

$$\frac{dy}{d\tau} = 0$$

• We get y = 0, 1

The logistic equation: slope field

- Can you tell the steady states of the logistic equation from the slope field?
- Do the solutions have an inflection point?
- Yes! Look at the slopes at a fixed point in time.

Definition (Stability of steady states)

A steady state S is said to be stable if states initially close enough to S will get even closer in time. S is saild to be unstable if states initially in a neighbourbood of S move away in time.

The logistic equation: slope field

Are the steady states stable?

- y = 0 is unstable.
- y = 1 is stable.

Observing the slope field from a different angle

Document camera

Definition (State-space diagmra)

A state-space diagram (or phase line diagram) consists of

- 1. A line representing the dependent variable y;
- 2. Circles (empty and solid) representing steady states;
- 3. Arrows indicating flow direction along the line.

Sketch the state-space diagram from the DE

$$\frac{dy}{d\tau} = y\left(1 - y\right)$$

\v

0

Document camera

Inflection points in solutions

$$\frac{dy}{dt} = f(y)$$

Where are inflection points in solutions?

• At extrema of f(y).

Interpreting results

- ► The population size tends to y = 1 (N = K) regardless what size it starts with.
- ► If the initial population is small 0 < y(0) < 1/2 (0 < N(0) < K/2), then the rate of population increase is slow initially, and gradually picks up speed, before dropping down to be slow again when approaching the steady population size.

Summary

 Qualitative analysis (slope fields and state-space diagrams) allows us to understand the behaviour of complex systems when the DEs cannot be easily solved 1. Given the differential equation and initial condition

$$\frac{dy}{dt} = y^2(y-a), \quad y(0) = 2a$$

determine

 $\lim_{t\to\infty}y(t).$