Qualitative Analysis of differential equations I Slope Fields

Math 102 Section 102 Mingfeng Qiu

Nov. 5, 2018

 OSH remarking form: put your group name/number (if working in a group) on the form!

- 1. Derive DEs and scale them (cont'd from last Friday)
 - Law of mass action
 - Logistic growth
- 2. Use slope fields to sketch solutions of DEs

- Chemical reactions happen because mixed molecules collide into each other. The concentration of any reactant increases → The possibility of collision becomes higher → The reaction is faster.
- Law of mass action: rate of reaction = k× (concentration of reactant 1) × (concentration of reactant 2) ×···.

In a chemical reactor with a constant volume, substance A is added at a constant rate of change of concentration I. Three molecules of A react to form a product. Derive a differential equation to describe the concentration of A in the reactor a(t). The reaction rate coefficient is k.

Document Camera

Nonlinearity arises due to the nature of chemical reactions!

Q1. Suppose one molecule of A and two molecules of B combine in a chemical reaction following the law of mass action. If the concentrations of A starts out as half that of B, give an equation for $\frac{da}{dt}$, where a(t) is the concentration of molecule A.

- A. $\frac{da}{dt} = -2ka$ B. $\frac{da}{dt} = -ka^3$ C. $\frac{da}{dt} = -2ka^2$ D. $\frac{da}{dt} = -4ka^3$
- E. None of the above

Document Camera

Uncontrolled population growth

$$\frac{dN}{dt} = rN$$

 This is not realistic, since there is only limited amount of resources. A common modification to the above model is logistic growth

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

• The nonlinear term $-r\frac{N^2}{K}$ controls population growth when N gets big.

Scaling (Nondimensionalization)

Notice the logistic growth equation

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

It has two parameters r, K. Both have units. Are they both important mathematically?

Document Camera

One equation rules all!

- Differential equations often describe a scientific process (physics, chemistry, biology).
 - You should be able to write down a DE given a description
 - Key idea: write down a balance relationship, and put it in a mathematical formula
- Using scaling (Nondimensionalization), one can obtain simplified equations which represent the behaviour of a family of equations.

Sketch solutions to differential equations using slope fields

Slope fields

Consider the autonomous differential equation

$$\frac{dy}{dt} = f(y)$$

- ► If graphing the general solutions: a family of curves on the y - t plane.
- ► The tangent line to any curve at a point (t, y) has slope equal to f(y) since dy/dt = f(y).
- Sometimes, the equations are hard to solve. But...
- ► If we know how the slopes look like (called slope fields) in the whole y t plane, then we would have a very good idea on what the solutions look like.
- Keep in mind that the slope field is continuous—at every point, there is a slope value.

Example:

$$\frac{dy}{dt} = 2y$$

• Idea: $\frac{dy}{dt} = 2y$ is the slope of the tangent line to the solution y(t).

Step 1: calculate a few representative slopes at different y values.

y	f(y) = 2y	slope of tangent line	behaviour of y	direction of arrow
-2	-4	-ve	decreasing	\searrow
-1	-2	-ve	decreasing	\searrow
0	0	0	no change in y	\rightarrow
1	2	+ve	increasing	\nearrow
2	4	+ve	increasing	\nearrow

Slope fields

Step 2: On the y - t plane, draw short segments of tangent lines at the same t value. Replicate for other t values.

Slope fields

Step 3: Start from a few different initial points, sketch solution curves following the tangent line segments field.

Your turn...

Sketch the slope field for

$$\frac{dF}{dt} = a - bF$$

on the following set of axes. Then sketch some solution curves.

The logistic equation

$$\frac{dN}{d\tau} = y\left(1 - y\right)$$

What do the solutions to the logistic equation look like?

The logistic equation

Do the solutions have an inflection point?

- The general solutions to a DE can be graphed as a family of curves.
- A slope field is a geometrical representation of slopes of tangent lines to these curves.
- The slope field can sometimes be obtained without solving the DE.
- One can qualitatively sketch how the solution curves look like with the help of the slope field.

Answers

1. D